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HBOT and Autism Overview 
 At first glance, the use of hyperbaric oxy-

gen therapy (HBOT) in autism appears out of the 

ordinary.  That is what I first thought when I heard 

about HBOT and autism almost 2 years ago.  At the 

time, no studies existed on the use of HBOT in au-

tistic individuals (there was one published case re-

port [1]).  In fact, many people who were propo-

nents for this therapy could not give a theoretical 

reason why it should/could even work.  We began 

using HBOT in autistic children with a great deal of 

skepticism.  After seeing improvements in some of 

these children, we decided that further study was 

needed.  Just over 2 years later, we have finished 

our third study on the use of HBOT in autism.  

Many of the underlying pathophysiological findings 

in autism might be ameliorable with HBOT and 

these have been reviewed in another publication [2].  

HBOT in children is generally regarded as safe [3].   

 

Cerebral Hypoperfusion in Autism 
 To understand how or why HBOT works 

in autistic children, we need to review some basic, 

but newly described, fundamental problems found 

in many autistic individuals.  There are now numer-

ous studies in the medical literature [4-11] demon-

strating cerebral hypoperfusion (decreased blood 

flow in the brain) in as many as 86% of autistic 

individuals [4].  In one study, this hypoperfusion 

typically worsened as the age of the autistic child 

increased, and become “quite profound” in older 

children compared to younger [5].  Furthermore, 

this diminished blood flow typically correlates with 

many core autistic symptoms (see Table 1).  When 

a neurotypical person has to focus on a task or gen-

erate speech (in other words, when the brain has to 

do work), there is an increase in blood flow to the 

brain, supplying more blood, oxygen, and glucose 

(fuel) [12].  However, several studies have now 

demonstrated that not only do some autistic children 

have diminished blood flow at baseline, they also 

do not get an increase in blood flow when brain 

cells have to do more work, such as when the chil-

dren have to focus on a task or generate a sentence 

[13-15].  In fact, sometimes cerebral blood flow goes 

down and this appears to be mediated, in part, by in-

appropriate vasoconstriction instead of vasodilatation 

[15].  The interesting thing about these studies demon-

strating cerebral hypoperfusion in autism is that no 

one has stopped to ask why the diminished blood flow 

exists in the first place.  This cerebral hypoperfusion 

appears to lead to cerebral hypoxia (impaired oxygen 

delivery) to the brain in some autistic individuals.  In 

fact, several studies have demonstrated a reduction of 

Bcl-2 and an increase of p53 in the brain of some au-

tistic individuals [80, 81].  Elevated p53 is caused by 

hypoxia [82] and an increase in Bcl-2 normally pro-

tects from cell death provoked by hypoxia; a reduction 

is associated with increased damage caused by hy-

poxia [83]. 

 
Table 1: Selected Areas of Cerebral Hypoperfusion 

in Autism and Clinical Correlations 

Area of Cerebral 

Hypoperfusion 

Clinical Correlation 

Thalamus Repetitive, self-stimulatory, 

and unusual behaviors [6] 

Temporal lobes Desire for sameness and so-

cial/communication impair-

ments [7] 

Temporal lobes and 

amygdala 

Impairments in processing 

facial expressions and emo-

tions [8] 

Fusiform gyrus Difficulty recognizing familiar 

faces [9] 

Wernicke’s and 

Brodmann’s areas 

Decreased language develop-

ment and auditory processing 

problems [5; 10] 

Temporal and fron-

tal lobes 

Decreased IQ [11] 

 

Cerebral Hypoperfusion and Neuroinflamma-
tion in Autism 
 The cause of cerebral hypoperfusion in autis-

tic individuals is unknown but might be due to in-

flammation.  Evidence published out of Johns Hopkins 
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in 2005 demonstrates that, upon autopsy, some au-

tistic children present evidence of inflammation in 

the brain [16].  Also described was inflammation 

around blood vessels, which is consistent with vas-

culitis, and could cause the vessel wall to become 

stiff and inflexible.  This in turn might decrease the 

ability of the blood vessel to dilate and lead to di-

minished blood flow.  There have been several 

other studies in the literature confirming the pres-

ence of inflammation in the brain of autistic indi-

viduals [17-19].  Autistic children make more se-

rum autoantibodies to the brain [20], including IgG 

and IgM autoantibodies to brain epithelial cells and 

nuclei when compared to typical children [21].  

Elevated serum autoantibodies to many neuron-

specific antigens and cross-reactive peptides have 

been found in autistic children [22], including anti-

bodies directed against cerebellar Purkinje cells 

[23] and neural proteins such as myelin basic pro-

tein [22, 24, 25].  Furthermore, 49% of autistic chil-

dren in one study created serum antibodies against 

the caudate nucleus and 18% produced serum anti-

bodies to the cerebral cortex [26]. Table 2 summa-

rizes evidence for neuroinflammation in autism. 

 

Table 2: Evidence of Neuroinflammation in Au-

tism 

A.  Elevated markers of neuroinflammation 

     Activation of microglia and astroglia [16] 

     Brain IL-6 [16] 

     Brain MCP-1 [16] 

     Brian GFAP [18] 

     CSF GFAP [27] 

B.  Elevated serum antibodies to brain proteins 

     Neuron-axon filament protein [28] 

     GFAP [28] 

     Brain epithelial cells and nuclei [20; 21] 

     Myelin basic protein [22; 24] 

     Myelin associated glycoprotein [22] 

     Ganglioside [22] 

     Sulfatide [22] 

     Chondroitin sulfate [22] 

     Myelin oligodendrocyte glycoprotein [22] 

     A,h-crystallin [22] 

     Neurofilament proteins [22] 

     Tubulin [22] 

     Cerebellar Purkinje cells [23] 

     Caudate nucleus [26] 

     Cerebral cortex [26] 

     BDNF [29] 

 Inflammation generally is associated with 

edema (increased swelling), can increase the space 

between cells [30], and might increase the amount of 

fluid present inside cells.  Two fMRI (functional 

Magnetic Resonance Imaging) studies published in 

2006 demonstrated that autistic individuals had more 

fluid inside brain cells when compared to neurotypical 

children [31-32].  Furthermore, functional connectivity 

(the ability of one brain cell to communicate to an-

other) is diminished in some autistic children when 

compared to neurotypical children [33].  It is possible 

that inflammation present in the brain of some autistic 

individuals is leading to diminished blood flow, im-

paired functional connectivity, and increased fluid 

inside brain cells as described in these studies. 

 Furthermore, elevated urinary levels of 8-

isoprostane-F2α have recently been described in some 

autistic individuals [34].  In some studies, this iso-

prostane elevation has been shown to cause in vivo 

vasoconstriction and increase the aggregation of plate-

lets.  A more recent study on autistic individuals also 

demonstrated increased urinary levels of isoprostane 

F2α-VI (a marker of lipid peroxidation, or oxidative 

stress), 2,3-dinorthromboxane B2 (which reflects 

platelet activation), and 6-keto-prostaglandin F1α (a 

marker of endothelium activation) [35].  Therefore, the 

inflammation surrounding blood vessels, and the in-

crease in the inflammatory substances leading to vaso-

constriction, and increased activation of platelets and 

endothelium might cause the diminished cerebral 

blood flow found in many autistic individuals.   

 Treatment of this inflammation might help 

restore normal blood flow.  In fact, many inflamma-

tory conditions such as lupus, Kawasaki disease, Be-

hçet’s disease, encephalitis, and Sjögren’s syndrome 

are characterized by cerebral hypoperfusion [36-42], 

and treatment with anti-inflammatory medication can 

restore normal cerebral blood flow in some of these 

conditions [43, 44].  In addition, review of the litera-

ture demonstrates that the use of anti-inflammatory 

treatments might improve autistic symptomatology 

[45].  In fact, treatment with corticosteroids in one 

child who developed an autoimmune lymphoprolifera-

tive syndrome and subsequent autism led to objective 

improvements in speech and developmental mile-

stones [46].  In another child with PDD-NOS, whose 

behavior and language regressed at 22 months of age, 

treatment with corticosteroids ameliorated abnormal 

behaviors such as hyperactivity, tantrums, impaired 

social interaction, echolalia, and stereotypies [47]. 
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Gastrointestinal Inflammation in Autism 
 Also described in dozens of studies is the 

presence of inflammation in the intestines of autistic 

children.  This has been termed autistic enterocolitis 

or chronic ileocolonic lymphoid nodular hyperpla-

sia (LNH).  This condition is characterized by mu-

cosal inflammation of the colon, stomach, and small 

intestine [48-50].   As many as 90% of autistic chil-

dren with gastrointestinal symptoms (diarrhea, con-

stipation, etc.) have evidence of ileal LNH, with 

68% having moderate to severe ileal LNH [48].  

Several studies have shown that some autistic chil-

dren have evidence of inflammatory cells such as 

lymphocytes [51, 52] and eosinophils [53] inside 

the gastrointestinal mucosa, sometimes mimicking 

an autoimmune lesion [51].  Inflammatory markers 

are also elevated, including TNF-α, Interferon-γ 

(IFN-γ), and IL-6, and anti-inflammatory markers 

such as IL-10 are decreased [52, 54].  Autistic chil-

dren typically make significantly more serum anti-

bodies against gliadin and casein peptides resulting 

in autoimmune reactions [55].  More than 25% of 

autistic individuals make serum IgG, IgM, and IgA 

antibodies against gliadin which can then cross-

react with cerebellar peptides [23]. 

 

HBOT, Cerebral Hypoperfusion, and In-
flammation 
 Since the cerebral hypoperfusion in autism 

is likely secondary to inflammation, HBOT might 

be especially helpful because it possesses potent 

anti-inflammatory tissue effects [56], with equiva-

lence to diclofenac 20 mg/kg noted in one animal 

study [57].  HBOT has been used in cases of vasculitis 

with good results [58], and with some success in dis-

orders characterized by cerebral hypoperfusion includ-

ing fetal alcohol syndrome [59], cerebral palsy [60, 

61], chronic brain injury [62], closed head injury [63], 

and stroke [64].  HBOT attenuated the production of 

proinflammatory cytokines including TNF-α [65], IL-

1 [65], IL-1β [66], and IL-6 [65], and increased the 

production of anti-inflammatory IL-10 [67].  HBOT 

reduced neuroinflammation in a rat model after trau-

matic brain injury [68].  HBOT diminished both in-

flammation and pain in an animal model of inflamma-

tory pain [69].  HBOT has been used in humans to 

achieve remission of Crohn’s disease [70-74] and ul-

cerative colitis [75, 76] not responding to conventional 

medications, including corticosteroids and immuno-

suppressive drugs.  Interestingly, in some studies, the 

decrease in inflammation with HBOT appeared to be 

caused by the increased pressure, not necessarily by 

the increased oxygen tension.  In one animal study, 

hyperbaric pressure without additional oxygen was 

shown to decrease TNF-α levels [77].  In a human 

study, HBOT at 2 atmosphere (atm) and 100% oxy-

gen, and hyperbaric pressure at 2 atm and 10.5% oxy-

gen (thus supplying 21% oxygen, equal to room air 

oxygen) both showed anti-inflammatory activity by 

inhibiting IFN-γ release, whereas 100% oxygen at 

room air pressure (1 atm) actually increased IFN-γ 

release [78].  For these reasons, HBOT might help 

ameliorate the inflammation found in some autistic 

individuals (see Table 3). 

 

Table 3: Effects of HBOT on Inflammatory Markers and Inflammation in Autism  

Marker Classification Autism Finding HBOT Effect 

TNF-α Inflammatory ↑ [52; 54] ↓ [65; 66; 77
1
] 

IL-1β Inflammatory ↑ [54] ↓ [66] 

IL-6 Inflammatory ↑ [16; 54] ↓ [65] 

IL-10 Anti-inflammatory ↓ [52] ↑ [67] 

IFN-γ Inflammatory ↑ [52] ↓ [78
2
] 

Neuroinflammation  ↑ [16-18] ↓ [65] 

GI inflammation  ↑ [48-50] ↓ [70; 75] 
1
 Hyperbaric pressure without additional oxygen decreased TNF-α. 

2
 Hyperbaric pressure without additional oxygen also decreased IFN-γ. 

 
Clinical Studies on HBOT in Autism 
 In one case report, Heuser et al. treated a 

four year old child with autism using hyperbaric 

therapy at 1.3 atm and 24% oxygen and reported 

“striking improvement in behavior including 

memory and cognitive functions” after only ten ses-

sions.  The child also had marked improvement of 

cerebral hypoperfusion as measured by pre-hyperbaric 

and post-hyperbaric Single Photon Emission Com-

puted Tomography (SPECT) scans [1].  Our previous 
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case series suggested that hyperbaric therapy at 1.3 

atm and 28% oxygen led to clinical improvements 

in some autistic children as measured by the Au-

tism Treatment Evaluation Checklist (ATEC), 

Childhood Autism Rating Scale (CARS), and So-

cial Responsiveness Scale (SRS) scales [79].  This 

low pressure HBOT was well tolerated by all 6 

children with no adverse effects noted. 

 Recently submitted for publication is a 

prospective open-label study on 18 children with 

autism who underwent 40 hyperbaric sessions of 

45 minutes duration each at either 1.5 atm and 

100% oxygen (6 children), or 1.3 atm and 24% 

oxygen (12 children).  Results were calculated 

before and after the 40 treatments using parent-

rated Aberrant Behavior Checklist-Community, 

SRS, CARS, ATEC, and a Gastrointestinal Scale.  

Fasting blood was drawn before and after the 40 

treatments for C-reactive protein (CRP) and mark-

ers of oxidative stress.  Results: For the 1.5 atm 

group, parents reported significant improvements 

in irritability, lethargy, hyperactivity, motivation, 

and sensory and cognitive awareness.  For the 1.3 

atm group, parents reported significant improve-

ments in motivation, mannerisms, physical health, 

sensory and cognitive awareness, speech, and 

communication.  Mean CRP improved in both 

groups, especially in a subgroup of children with 

very elevated initial CRP.  There was no statisti-

cally significant change in mean plasma oxidized 

glutathione levels in either group after 40 treat-

ments, although plasma total and free glutathione 

levels were somewhat diminished.  Comparisons 

between the 2 groups in this study must be done 

with caution because of the small number of par-

ticipants involved, but the children receiving the 

higher pressures (1.5 atm) appeared to have more 

benefits. 

 We just finished a prospective, double-

blind, controlled study on the use of HBOT at 1.3 

atm and 24% oxygen in 61 autistic children.  The 

control group received approximately 1.03 atm 

(0.5 psi).  Parent, psychologists, and physicians 

evaluated the children and were blinded to the 

treatment status of the children.  We found statisti-

cally significant improvements in Clinical Global 

Impression (CGI) Scales, ATEC, and ABC.  This 

study is currently being prepared for publication. 
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